全部产品分类
GCL-010208 光学透镜

GCL-010208

立即咨询获取报价获取报价收藏 收藏 下载规格书 下载规格书
德国
分类:光学透镜

更新时间:2023-01-06 15:18:12

型号: GCL-010208

GCL-010208概述

Kryptronic Technologies的GCL-010208是一款光学镜头,焦距为75 mm,中心厚度为8 mm,直径为38.1 mm,边缘厚度(ET)为3.2 mm.有关GCL-010208的更多详细信息,

GCL-010208参数

  • 透镜类型 / Lens Type : Bi-Convex Lenses
  • 焦距 / Focal Length : 75 mm
  • 中心厚度 / Center Thickness : 8 mm
  • 直径 / Diameter : 38.1 mm
  • 基底/材料 / Substrate/Material : N-BK7
  • 表面质量 / Surface Quality : 60-40 scratch-dig

GCL-010208规格书

GCL-010208厂家介绍

光学和光机部件的制造商和供应商,包括机器视觉用透镜物镜(标准和OEM)、透镜、窗口、棱镜、分束器、透镜系统和滤波器、光学涂层、机械定位设备和工业用激光二极管模块。

相关内容

相关产品

图片名称分类制造商参数描述
  • 光电查
    Lensed Fiber to Focus or Collimate Light光学透镜IDIL Fibres Optiques

    Idil Fibers Optiques提供用于聚焦或准直光线的透镜光纤。我们的产品是小尺寸光纤。它看起来像一根光纤(250µm),末端有几毫米的条纹。获得接近60µm的模式直径的能力导致高定位容差和高耦合比。这些光学元件也可提供端面涂层,如角度抛光点,允许低于-50分贝的回波损耗以及高功率承载。此外,透镜光纤可以插入不同类型的光学连接器或套圈中。例如,由Idil Fibers Optiques开发的透镜光纤构成了耦合光纤和激光器的极好方式。这些透镜光纤还导致在开关或激光二极管等领域中的几种应用。

  • 光电查
    49-524光学透镜Edmund Optics

    透镜类型: Plano-Concave Lens波长范围: 600 to 1050 nm

    来自Edmund Optics的49-524是波长范围为600至1050nm、焦距为-27mm、中心厚度为3mm、直径为9mm、半径为-21.19mm的光学透镜。有关49-524的更多详细信息,请参阅下文。

  • 光电查
    A115040光学透镜Esco Optics, Inc

    透镜类型: Plano-Convex Lenses波长范围: 250 nm

    来自ESCO Optics,Inc的A115040是具有波长范围250nm、焦距101.6mm、中心厚度6.1mm、直径38.1mm、边缘厚度(ET)2mm的光学透镜。有关A115040的更多详细信息,请参阅下文。

  • 光电查
    KPX232光学透镜MKS | Newport

    透镜类型: Plano-Convex Lenses波长范围: 380 to 2100 nm

    MKS|Newport的KPX232是一款光学透镜,波长范围为380至2100 nm,焦距为300 mm,中心厚度为7.754 mm,直径为76.2 mm,半径为155.04 mm.有关KPX232的更多详细信息,请参阅下文。

  • 光电查
    PLCX-F50-D10光学透镜AC Photonics

    透镜类型: Plano-Convex Lenses波长范围: 633 nm

    AC Photonics的PLCX-F50-D10是一款光学透镜,波长范围为633 nm,焦距为50 mm,直径为10 mm.有关PLCX-F50-D10的更多详细信息,请参阅下文。

相关文章

  • 准分子激光器的输出耦合器

    LASER COMPONENTS 生产部分反射涂层,用于激光系统中的输出耦合器或分束器。高功率电介质涂层的波长范围为 248 纳米至 3000 纳米。

  • 利用宽带消色差和偏振不敏感金属透镜提高图像质量

    对光的精确控制是光学成像、传感和通信的一项关键要求。为此采用的传统透镜有其局限性,需要更精确、更紧凑的解决方案。为了满足这一需求,研究人员开发出了金属透镜,即由尺寸小于光波长的纳米材料制成的超薄透镜。

  • 新技术可加速开发声学透镜、抗冲击薄膜和其他未来材料

    超材料是工程奇迹的产物。它们由日常的聚合物、陶瓷和金属制成。当这些普通材料在微观尺度上被精确地构造成错综复杂的结构时,它们就会具有非凡的特性。 在计算机模拟的帮助下,工程师们可以任意组合微观结构,观察某些材料如何转变,例如,变成声音聚焦的声学透镜或轻质防弹薄膜。

  • 新方法最大限度地减少了微透镜阵列生产中的对准误差

    双面微透镜阵列(DSMLAs)在提高光学器件性能方面发挥着至关重要的作用,支持从先进成像系统到激光束均匀化的应用。然而,传统的制造方法经常与校准误差作斗争,这会降低这些阵列的功能和效率。