• 光电探测器:单次测量实现高维光探测

    由中国科学院长春光学精密机械与物理研究所(CIOMP)李伟教授领导的国际合作团队在《自然》杂志上发表的一项新研究介绍了一种新型小型化光电探测器,该探测器能够通过单一设备和单一测量来表征宽带频谱上的任意偏振态。

  • 光电查AI助手全新上线!

    光电查AI助手,是您在光电领域的智能伙伴。凭借14年行业经验和10万+产品数据,我们提供精准的产品匹配和一站式选型服务。无论是行业专家还是普通用户,都能迅速找到所需的光电产品,享受个性化服务体验。

  • 新方法最大限度地减少了微透镜阵列生产中的对准误差

    双面微透镜阵列(DSMLAs)在提高光学器件性能方面发挥着至关重要的作用,支持从先进成像系统到激光束均匀化的应用。然而,传统的制造方法经常与校准误差作斗争,这会降低这些阵列的功能和效率。

  • 飞秒激光与活组织相互作用的新见解

    非线性光学显微镜彻底改变了我们观察和理解复杂生物过程的能力。然而,光也会损害生物物质。然而,强光对细胞过程的不可逆扰动背后的机制仍然知之甚少。

  • 新型干涉仪将使量子光子技术更加可靠

    越来越多的新兴量子应用使用光学技术。从本质上讲,光子以光速长距离传输信息,使它们成为快速安全通信和量子计算的理想候选者。许多这样的应用需要光子是相同的(无法区分的)。当光子不相同时,可能导致数据错误,量子技术变得不那么可靠。

  • 全向彩色波长调谐方法开启智能光子学的新可能性

    在快速发展的光子学领域,韩国出现了一项进步,重新定义了结构颜色操纵的可能性。科学家已经开发出一种能够全向波长调谐的开创性技术,有望彻底改变无数可调谐光子的应用。

  • 晶体技术引领下一代OLED:中国科学家开发高性能晶体白色OLED

    中国科学家近期在《光科学与应用》杂志上发布的研究成果显示,他们成功开发出了一种高性能的晶体白色有机发光二极管(OLED)。通过采用热激活延迟荧光(TADF)材料和橙色磷光掺杂剂的创新技术,并结合晶体主体基质中嵌入的纳米聚集体结构,这项技术实现了对发光行为的有效控制,提高了器件性能,包括更高的亮度和光子输出效率。

  • 基于CsPbBr3的无机直接转换X射线CMOS探测器:医学成像的新里程碑

    中国科学院深圳先进技术研究院(SIAT)与华中师范大学的研究团队合作开发了一种基于CsPbBr3的无机直接转换X射线CMOS探测器,该技术已发表在《自然通讯》杂志上。这一新型探测器具有优越的空间和时间分辨率,为医学成像领域带来了突破性进展,将为心血管疾病和癌症等疾病的诊断与治疗提供更安全、更准确的解决方案。

  • 研究人员在硅芯片上开发了世界上最小的量子光探测器

    布里斯托尔大学的研究人员通过将世界上最小的量子光探测器集成到硅芯片上,在缩放量子技术方面取得了重要突破。这篇题为“双cmos电子光子集成电路量子光探测器”的论文发表在《科学进展》杂志上。

  • 研究人员实现了微环面谐振器的超高q自由空间耦合

    亚利桑那大学的科学家们利用一个单物镜实现了光与超高质量因子微环体的远场耦合。这可以为全片上多路复用微环传感平台提供基础。

  • 物理学家为6G创建光学元件

    来自Skoltech, MIPT和ITMO的物理学家组成的联合团队开发了一种光学元件,可以帮助管理太赫兹光束的特性并将其分成几个通道。该装置可以作为太赫兹涡旋光束的调制器和发生器,用于医学、6G通信和显微镜。这篇论文发表在《先进光学材料》杂志上。

  • 利用人工智能来提高超透镜相机的图像质量

    研究人员利用深度学习技术来提高超透镜相机的图像质量。这种新方法利用人工智能将低质量的图像转化为高质量的图像,这可以使这些相机适用于多种成像任务,包括复杂的显微镜应用和移动设备。

  • 有机红外探测器提供了先进的成像技术

    由于其在3D人脸识别、增强/虚拟现实、机器人和自动驾驶汽车等人工智能驱动技术中的潜在应用,对近红外(NIR)和短波红外(SWIR)光谱中的高像素、低成本焦平面阵列的需求激增。传统的SWIR光电二极管依赖于晶体锗(Ge)或砷化铟镓(InGaAs),其局限性包括高暗电流和复杂的制造工艺。有机半导体的出现提供了一个很有前途的替代方案,具有更容易制造和可调谐光学特性的潜力。

  • 光纤传感在结构健康监测中的未来

    光纤传感器(FOS)具有体积小、耐腐蚀、易于嵌入等优点,是一种前景广阔的替代品,有助于 SHM 的快速发展和广泛应用。

  • 将超强激光聚焦到单一波长

    超强超短激光是应用于物理、国家安全、工业和医疗保健等各个领域的强大工具。它们帮助研究人员深入研究强场激光物理、激光驱动辐射源、粒子加速等。

  • 研究人员使用智能手机屏幕创建3D分层全息图像

    研究人员开发了一种3D全彩显示方法,该方法使用智能手机屏幕而不是激光来创建全息图像。随着进一步的发展,这种新方法可以用于增强现实或虚拟现实显示。

  • 科研团队实现磁振频率梳

    光学频率梳是由均匀间隔和相参窄谱线组成的光辐射频谱,最初是为精确的时间和频率测量而开发的。近二十年来,它在天文学、宇宙学、光学原子钟、量子密钥分发等领域显示出广阔的应用前景。然而,实现高精度磁振频率测量的磁振频率梳仍然是一个挑战。

  • 旧晶体,新故事,提高深紫外激光性能

    传统上,高功率193纳米(nm)激光器在光刻中起着关键作用,形成了用于精确图案的系统的组成部分。然而,传统ArF准分子激光器的相干性限制阻碍了它们在需要高分辨率图案的应用中的有效性,如干涉光刻。

  • 罗马尼亚中心探索世界上最强大的激光器

    “准备好了吗?信号发送!”在罗马尼亚一个研究中心的控制室里,工程师安东尼娅·托马启动了世界上最强大的激光,这预示着从卫生领域到太空领域的所有领域都将取得革命性的进步。

  • 一种超紧凑的多模元显微镜

    在当今的信息社会中,成像系统的多功能性和小型化是非常重要的。显微成像技术在生物医学领域的科学研究和疾病诊断中一直是不可或缺的,并正朝着集成化、便携化、多功能化的方向发展。

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 42