全部产品分类
31-858 光学透镜

31-858

立即咨询获取报价获取报价收藏 收藏 下载规格书 下载规格书
美国
分类:光学透镜

更新时间:2023-07-18 15:53:02

型号: 31-8583mm Dia. x 3mm FL, MgF2 Coated, Double-Convex Lens

概述

来自Edmund Optics的31-858是波长范围为400至700nm、焦距为3mm、中心厚度为2.3mm、直径为3mm、半径为3.5mm的光学透镜。有关31-858的更多详细信息,

参数

  • 透镜类型 / Lens Type : Double-Convex Lens
  • 波长范围 / Wavelength Range : 400 to 700 nm
  • 焦距 / Focal Length : 3 mm
  • 焦距公差 / Focal Length Tolerance : ±1 %
  • 中心厚度 / Center Thickness : 2.3 mm
  • 直径 / Diameter : 3 mm
  • 半径 / Radius : 3.5 mm
  • 斜角 / Bevel : Protected
  • 基底/材料 / Substrate/Material : N-SF5
  • 表面质量 / Surface Quality : 40-20 scratch-dig
  • RoHS / RoHS : Yes

规格书

厂家介绍

爱特蒙特光学Edmund Optics®(EO)是一家全球领先的光学、成像和光子学技术供应商,自1942年以来一直服务于各种市场,包括生命科学、生物医学、工业检测、半导体、研发和国防。Edmund Optics设计和制造各种光学元件、多元件透镜、成像系统和光学机械设备,同时通过批量生产库存和定制产品支持OEM应用。Edmund Optics在全球超过9个国家设有分支机构,拥有1,000多名员工,并将继续扩张。

相关产品

图片名称分类制造商参数描述
  • 光电查
    48-028光学透镜Edmund Optics

    透镜类型: Plano-Convex Lenses波长范围: 200 to 2200 nm

    Edmund Optics的48-028是一款光学透镜,波长范围为200至2200 nm,焦距为100 mm,中心厚度为2.44 mm,直径为12 mm,半径为45.85 mm.有关48-028的更多详细信息,请参阅下文。

  • 光电查
    84-174光学透镜Edmund Optics

    透镜类型: Plano-Convex Lenses波长范围: 1310 nm

    来自Edmund Optics的84-174是波长范围为1310nm、焦距为48mm、中心厚度为2.5mm、直径为12mm、半径为24.82mm的光学透镜。有关84-174的更多详细信息,请参阅下文。

  • 光电查
    LPX-50.0-41.5-C光学透镜CVI Laser Optics

    透镜类型: Plano-Convex Lenses波长范围: 546.1 nm

    来自CVI Laser Optics的LPX-50.0-41.5-C是波长范围为546.1nm、焦距为80mm、中心厚度为10.4mm、直径为50mm、半径为41.5mm的光学透镜。有关LPX-50.0-41.5-C的更多详细信息,请参阅下文。

  • 光电查
    LA1238-C光学透镜Thorlabs Inc

    透镜类型: Plano-Convex Lenses波长范围: 1050 to 1700 nm

    来自Thorlabs Inc的LA1238-C是波长范围为1050至1700nm的光学透镜,焦距为100mm,中心厚度为19.2mm,直径为75mm,边缘厚度(ET)为3mm.有关LA1238-C的更多详细信息,请参阅下文。

  • 光电查
    KPX115光学透镜MKS | Newport

    透镜类型: Plano-Convex Lenses波长范围: 380 to 2100 nm

    MKS|Newport的KPX115是一款光学透镜,波长范围为380至2100 nm,焦距为400 mm,中心厚度为3.39 mm,直径为25.4 mm(1英寸),半径为206.72 mm.有关KPX115的更多详细信息,请参阅下文。

相关文章

  • 科学家利用简单的 PSCOF 方法展示了电可调微透镜阵列

    微透镜阵列是在自动立体显示、光通信、波前传感、整体成像等领域大有可为的关键元件之一。例如,微透镜阵列是积分成像的关键元件,用于采集和显示图像。在大多数情况下,由于所用微透镜阵列的焦距固定,整体成像的图像深度受到限制。

  • 美国国家航空航天局的工程师突破了物理学的极限来聚焦光

    位于马里兰州格林贝尔特的美国宇航局戈达德太空飞行中心的太阳物理学家道格-拉宾(Doug Rabin)博士说,光子筛是一种能够聚焦极紫外光的技术,它应该能够分辨出比现在太阳动力学天文台的超紫外成像仪所能看到的小10到50倍的特征。

  • 利用宽带消色差和偏振不敏感金属透镜提高图像质量

    对光的精确控制是光学成像、传感和通信的一项关键要求。为此采用的传统透镜有其局限性,需要更精确、更紧凑的解决方案。为了满足这一需求,研究人员开发出了金属透镜,即由尺寸小于光波长的纳米材料制成的超薄透镜。

  • 新方法最大限度地减少了微透镜阵列生产中的对准误差

    双面微透镜阵列(DSMLAs)在提高光学器件性能方面发挥着至关重要的作用,支持从先进成像系统到激光束均匀化的应用。然而,传统的制造方法经常与校准误差作斗争,这会降低这些阵列的功能和效率。