使用激光,研究人员可以直接控制核子的自旋,这可以编码量子信息

发布时间:2023-02-16 00:00:00.000Z

图中说明了两束波长稍有不同的激光束可以影响原子核周围的电场,以一种推动该电场的方式将原子核的自旋推向一个特定的方向,如箭头所示。资料来源:麻省理工学院

原则上,基于量子的设备,如计算机和传感器,在执行许多复杂任务时可以大大超过传统的数字技术。但是,尽管科技公司以及学术和政府实验室进行了大量投资,在实践中开发这种设备一直是一个具有挑战性的问题。

今天最大的量子计算机仍然只有几百个 "量子比特",即数字比特的量子等效物。

现在,麻省理工学院的研究人员提出了一种新的方法来制造量子比特并控制它们读写数据。这种方法在现阶段是理论上的,它基于测量和控制原子核的自旋,使用来自两个颜色略有不同的激光器的光束。2月14日星期二发表在《Physical Review X》杂志上的一篇论文描述了这些发现,该论文由麻省理工学院的博士生徐浩伟、教授Ju Li和Paola Cappellaro以及其他四人撰写。

长期以来,核自旋被认为是基于量子的信息处理和通信系统的潜在构件,而光子也是如此,它是电磁辐射的不连续包,或 "量子 "的基本粒子。但是哄骗这两种量子物体一起工作是很困难的,因为原子核和光子几乎没有相互作用,而且它们的自然频率相差六到九个数量级。

在麻省理工学院团队开发的新工艺中,进入的激光束的频率差异与核自旋的过渡频率相匹配,促使核自旋以某种方式翻转。

"核科学与工程教授卡佩拉罗说:"我们已经找到了一种新的、强大的方法,将核自旋与来自激光的光子连接起来。"这种新的耦合机制使它们的控制和测量成为可能,这使得使用核自旋作为量子比特成为更有前途的努力。

研究人员说,这个过程是完全可调整的。例如,其中一个激光器可以被调谐到与现有电信系统的频率相匹配,从而将核自旋变成量子中继器,实现长距离的量子通信。

以前尝试用光来影响核自旋是间接的,而是耦合到该核周围的电子自旋,而电子自旋又会通过磁相互作用影响该核。但这需要附近存在未配对的电子自旋,并导致核自旋的额外噪音。对于新的方法,研究人员利用了许多核具有电四极的事实,这导致了与环境的电核四极互动。这种相互作用可以受到光的影响,以改变核本身的状态。

"核自旋通常是相当弱的相互作用,"李说。"但通过利用一些核具有电四极的事实,我们可以诱导这种二阶非线性光学效应,直接耦合到核自旋,而没有任何中间电子自旋。这使我们能够直接操纵核自旋"。

除其他事项外,这可以允许精确识别甚至绘制材料的同位素,而拉曼光谱,一种基于类似物理学的成熟方法,可以识别材料的化学和结构,但不能识别同位素。研究人员说,这种能力可能有许多应用。

至于量子存储器,目前用于或考虑用于量子计算的典型设备的相干时间--意味着存储的信息可以可靠地保持完整的时间--往往是以微小的几分之一秒来衡量。但在核自旋系统中,量子相干时间是以小时计算的。

该团队说,由于光学光子被用于通过光纤网络进行长距离通信,因此将这些光子直接耦合到量子存储器或传感设备的能力可以为新的通信系统提供巨大的好处。此外,这种效应可以被用来提供一种将一组波长转换为另一组波长的有效方法。徐说:"我们正在考虑使用核自旋进行微波光子和光学光子的转换,"他补充说,这可以为这种转换提供比其他方法更大的保真度。

到目前为止,这项工作是理论上的,所以下一步是在实际的实验室设备中实现这一概念,可能首先是在一个光谱系统中。"徐说:"这可能是原则性验证实验的一个很好的候选者。他说,在此之后,他们将解决量子设备,如存储器或转导效应。

更多信息:徐浩伟等,《基于光核四极效应的核自旋的双光子界面》,《Physical Review X》(2023)。DOI: 10.1103/PhysRevX.13.011017

本文由光电查搜集整理,未经同行评议,请自行判断可信度。仅供学习使用。

相关内容

相关产品

图片名称分类制造商参数描述
  • 光电查
    0.1gbps-100gbps aoc-transceiver 误码率测试器激光器模块和系统Liverage Technology Inc

    IBERT X1 Mini是一款误码率测试仪(BERT),专为0.1Gbps至100Gbps的AOC测量而设计。有两个可互换的插槽板,分别包括QSFP和SFP端口。QSFP和SFP端口都遵循QSFP MSA和SFP MSA。用户界面允许通过USB电缆连接到PC来单独监控误码率、错误计数和计时器。还可以在用户界面中监控收发器模块的串行ID和数字诊断监视器。

  • 光电查
    1、1.5、2微米的脉冲单频光纤激光器激光器模块和系统

    波长: 1550 nm

    脉冲单频光纤激光器设计用于在单纵模下提供较高的脉冲能量,具有强大的研究和工业应用能力。

  • 光电查
    1微米飞秒光纤激光器激光器模块和系统CALMAR Laser

    波长: 1030nm

    1µm飞秒光纤激光器是一种高质量、可靠的被动锁模光纤激光器。模块(FPL-M)系列具有对冲击和振动不敏感的坚固结构,并为苛刻的OEM应用(尤其是用于玻璃切割和消费电子制造的高功率皮秒激光器)提供了卓越的稳定性和可靠性。先进的工程设计和一致的制造工艺确保了OEM批量生产的较高质量标准。波长可以从1030到1065纳米之间选择。脉冲宽度在工厂可从0.7到10 ps之间选择,脉冲形状接近变换限制。定时抖动低至60 fs。重复频率可指定为20至80 MHz。FPL-M系列具有高达20 mW的输出功率,是需要低电源的应用中较经济的解决方案。射频同步输出作为触发信号提供。FPL-M系列既可以用作带有5 VDC电源的独立激光源,也可以用作单独的驱动器,或者作为OEM模块集成。

  • 光电查
    1微米高功率亚瓦级飞秒光纤激光器激光器模块和系统CALMAR Laser

    波长: 1030nm

    1µm亚瓦特飞秒光纤激光器是一种高质量、可靠的被动锁模光纤激光器,输出功率为几百mW。该系列采用了对冲击和振动不敏感的坚固结构,为苛刻的应用提供了卓越的稳定性和可靠性。先进的工程设计和一致的制造工艺确保了OEM批量生产的较高质量标准。波长可以从1030到1065纳米之间选择。脉冲宽度在工厂可从0.2到>6 ps进行选择。定时抖动低至60 fs。重复频率可指定为10至50 MHz。射频同步输出作为触发信号提供。该模块系列可作为带有5 VDC电源的独立激光源或单独的驱动器使用,或作为OEM模块集成。

  • 光电查
    1微米可调谐光纤激光器Varius-NL-1064T激光器模块和系统

    波长: 1030nm

    Varius-NL-10xx-T是波长可调谐的1030 nm-1110 nm连续光纤激光器。Varius的主要功能是波长调谐,步长为0.2 nm。